Федеральное государственное бюджетное учреждение науки
Институт теоретической и экспериментальной биофизики
Российской академии наук
en ИТЭБ (ru)
Нейробиологи предложили новую концепцию организации мозга на клеточном уровне

Примерно 150 лет в нейронауках началась первая мировая война. Исследователи спорили, существуют ли отдельные клетки мозга, или весь мозг представляет собой единую сеть. В ходе этих дебатов, кстати, и появилось само слово нейрон. Эта война имела собой два последствия. Во-первых, победили сторонники Сантьяго Рамон-и-Кахаля, и мы узнали что в мозге есть отдельные клетки – нейроны. Впрочем, тогда были уже известны и другие клетки мозга, не проявляющие электрическую активность – Рудольф Вирхов дал им название глия. А во-вторых, после этой победы, после того, как Чарльз Шеррингтон ввел понятие синапса, Джон Захари Янг открыл гигантский аксон и гигантский синапс кальмара, на основе которых Алан Ходжкин и Эндрю Хаксли построили теорию потенциала действия, нейронауки стали окончательно нейроноцентричными.

Несколько дней назад в очень авторитетном журнале Trends in Neuroscience два крупных исследователя не-нейрональных клеток, Алексей Семьянов из Института биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова РАН и Алексей Верхратский из Университета Манчестера сделали предложение: отказаться от нейроноцентричности и вообще любой «центричности» в нейронауках.

«Мозг как любой другой орган состоит из разных клеток и внеклеточного пространства. Рассмаривать его работу с точки зрения лишь нейронной сети противоречит базовым принципам физиологии. Поэтому ученые уже несколько десятилетий предлагали концепции локальных взаимодействий между разными типами клеток: трехчастный синапс, нейроглиоваскулярный комплекс, внесинаптическая передача и так далее. Однако все это — отдельные элементы единой системы, которую мы назвали активной средой мозга. В представленной работе мы выдвинули концепцию многокомпонентной активной среды как основу для описания основных функций мозга, когнитивных процессов, сознания», — говорит Алексей Семьянов. А вот как авторы пишут об этом в статье:

В соответствии с идеей многочастного синапса синаптическая микросреда обеспечивает потребности синапса, обеспечивая его питательными веществами, удаляя нейротрансмиттеры, поддерживая концентрацию ионов и, таким образом, способствуя синаптической передаче и пластичности. Мы предлагаем отказаться от такой синаптоцентричности, постулируя, что сами синапсы являются частью активной среды; они влияют на своих соседей, таких как астроцитарные и микроглиальные отростки, олигодендроциты, элементы нейроглиоваскулярного комплекса, внеклеточный матрикс. Синаптическая сигнализация запускает или изменяет активность этих компонентов (например, мембранный потенциал, ионные или метаболические реакции) и стимулирует пластичность (например, морфологическое ремоделирование), что, в свою очередь, влияет на синаптическую передачу, ее эффективность и пластичность. Таким образом,активная среда — это морфофункциональная концепция, основанная на топологической организации нервной ткани. Эта концепция объединяет несколько предыдущих представлений, таких как многочастный синапс, нейроваскулярный комплекс, синаптическая и внесинаптическая сигнализация и объемная передача, используемые для описания функциональной организации мозга. Морфологическая организация и функциональные свойства активной среды специфичны для разных областей мозга, при этом существенные различия между корой и мозжечком или белым и серым веществом определяются локальным клеточным составом и свойствами клеток.

В статье авторы подробно остановились на астроцитарной составляющей активной среды серого вещества – и здесь тоже бросают вызов старым концепциям. Например, «периферическим астроцитарным процессам» (PAP) – вместо этого предлагают рассмотреть морфологию астроцита в виде веточек (branches), листочков (leaflets) гомологичных дендритам и дендритным шипикам нейронов.

«Отдельные листочки не принадлежат к конкретным трехчастным синапсам, а скорее взаимно взаимодействуют с рядом локальных синапсов. Морфологическая пластичность листочков динамически изменяет активную среду и модулирует синаптическую передачу, изменяя пути диффузии нейромедиаторов и локализацию транспортеров нейротрансмиттеров. Такой взгляд на морфофункциональную организацию нервной ткани поднимают многочисленные вопросы, связанные с вкладом различных клеточных и неклеточных компонентов активной среды в высшие функции мозга, такие как обучение и память Будущее хранит ключ к этим нерешенным вопросам», — резюмируют авторы.

Источник